Các dạng toán phương trình lượng giác, phương pháp giải và bài bác tập từ cơ phiên bản đến cải thiện - toán lớp 11

Sau khi có tác dụng quen với những hàm lượng giác thì những dạng bài bác tập về phương trình lượng giác chính là nội dung tiếp sau mà những em sẽ học trong công tác toán lớp 11.

Bạn đang xem: Cách giải phương trình lượng giác cơ bản cực hay


Vậy phương trình lượng giác có những dạng toán nào, phương pháp giải ra sao? họ cùng tò mò qua bài viết này, đồng thời vận dụng các cách thức giải này để triển khai các bài xích tập từ cơ bản đến cải thiện về phương trình lượng giác.

I. Triết lý về Phương trình lượng giác

1. Phương trình sinx = a. (1)

° |a| > 1: Phương trình (1) vô nghiệm

° |a| ≤ 1: gọi α là một cung thỏa sinα = a, khi đó phương trình (1) có những nghiệm là:

 x = α + k2π, ()

 và x = π - α + k2π, ()

- Nếu α vừa lòng điều kiện 

*
 và sinα = a thì ta viết α = arcsina. Khi đó những nghiệm của phương trình (1) là:

 x = arcsina + k2π, ()

 và x = π - arcsina + k2π, ()

- Phương trình sinx = sinβ0 có các nghiệm là:

 x = β0 + k3600, ()

 và x = 1800 - β0 + k3600, ()

2. Phương trình cosx = a. (2)

° |a| > 1: Phương trình (2) vô nghiệm

° |a| ≤ 1: gọi α là 1 cung thỏa cosα = a, lúc ấy phương trình (2) có những nghiệm là:

 x = ±α + k2π, ()

- Nếu α vừa lòng điều kiện 0 ≤ α ≤ π và cosα = a thì ta viết α = arccosa. Khi đó các nghiệm của phương trình (2) là:

 x = ±arccosa + k2π, ()

- Phương trình cosx = cosβ0 có các nghiệm là:

 x = ±β0 + k3600, ()

3. Phương trình tanx = a. (3)

- Tập xác định, hay đk của phương trình (3) là: 

*

- Nếu α thỏa mãn nhu cầu điều kiện

*

- Nếu α thỏa mãn nhu cầu điều khiếu nại

*

II. Những dạng toán về Phương trình lượng giác và cách thức giải

° Dạng 1: Giải phương trình lượng giác cơ bản

* Phương pháp

- Dùng những công thức nghiệm khớp ứng với từng phương trình.

* lấy một ví dụ 1 (Bài 1 trang 28 SGK Đại số cùng Giải tích 11): Giải những phương trình sau:

a) b)

b)

d)

*

* giải thuật bài 1 trang 28 SGK Đại số và Giải tích 11:

a)  

*

 

*

b) 

*

 

*

 

*

c) 

*

 

*

 

*

 

*

d)

*
 
*

 

*

*
*
 
*

* ví dụ 2: Giải các phương trình sau:

 a)

 b)

 c)

 d)

° Lời giải:

a) 

*

 

*
 
*
*

b) 

*

 

*
 
*
 
*

c) 

*

 

*
 
*

d) 

*

 

*
 
*

° Dạng 2: Giải một số trong những phương trình lượng giác chuyển được về dạng PT lượng giác cơ bản

* Phương pháp

- Dùng những công thức biến đổi để lấy về phương trình lượng giác đã đến về phương trình cơ phiên bản như Dạng 1.

* lấy ví dụ 1: Giải những phương trình sau:

a) 

*

b) 

*

c) 

*

d) 

*

° Lời giải:

a)

*
 
*

 

*
*
 
*

+ Với 

*
 
*
 hoặc 
*

+ cùng với

*
 
*
 hoặc 
*

b) 

*
 
*

 

*
 
*

c)

*
 
*

 

*
 

 

*

 

*

 

*

d)

*
*

 

*
 
*

 

*
 hoặc 
*

 

*

* giữ ý: Bài toán trên áp dụng công thức:

 

*
*

 

*
*

* ví dụ như 2: Giải những phương trình sau:

a) 

b)

° Lời giải:

a) 

 

*
*

 

*
 
*

 

*
 hoặc 
*
 với 
*

b)

 

*
 
*

 

*
 
*

 

*

 

*
 hoặc 
*
 với 
*

* lưu giữ ý: bài bác toán vận dụng công thức thay đổi tích thành tổng:

 

*

 

*

 

*

* lấy một ví dụ 3: Giải các phương trình sau:

a)1 + 2cosx + cos2x = 0

b)cosx + cos2x + cos3x = 0

c)sinx + sin2x + sin3x + sin4x = 0

d)sin2x + sin22x = sin23x

° Lời giải:

a)

*

 

*
 
*

 

*
 
*

b)

*

 

*
 
*

 

*
*
 
*

c)

*

 

*

 

*

 

*

  hoặc 

*

  hoặc 

*

 

*
 hoặc 
*
 hoặc 
*

 

*
 hoặc 
*
 hoặc 
*
 với 
*

d)

*

 

*

 

*

 

*

 

*

 

*

 

*

 

*
 
*

 

*
 hoặc 
*
 hoặc 
*

* lưu ý: Bài toán trên có áp dụng công thức đổi khác tổng kết quả và công thức nhân đôi:

 

*

 

*

 

*

 

*

 

*

 

*
 
*

° Dạng 3: Phương trình bậc nhất có một hàm số lượng giác

* Phương pháp

- Đưa về dạng phương trình cơ bản, ví dụ: 

* lấy ví dụ như 1: Giải các phương trình sau:

a) 

b) 

° Lời giải:

a)  

 

*
 
*

+ Với 

*

+ Với 

*

b)

 

*

 

*

 

*

 

*
 hoặc 
*

+ Với 

*
 
*
*

+ Với 

*
: vô nghiệm.

° Dạng 4: Phương trình bậc hai gồm một hàm số lượng giác

* Phương pháp

♦ Đặt ẩn phụ t, rồi giải phương trình bậc hai so với t, ví dụ:

 + Giải phương trình: asin2x + bsinx + c = 0;

 + Đặt t=sinx (-1≤t≤1), ta có phương trình at2 + bt + c = 0.

* lưu lại ý: Khi để t=sinx (hoặc t=cosx) thì phải có điều kiện: -1≤t≤1

* lấy một ví dụ 1: Giải những phương trình sau

a) 

b) 

° Lời giải:

a) 

- Đặt 

*
 ta có: 2t2 - 3t + 1 = 0

 ⇔ t = 1 hoặc t = 1/2.

+ với t = 1: sinx = 1 

*

+ cùng với t=1/2: 

*
 

 

*
 hoặc 
*

b) 

 

*

*

+ Đặt 

*
 ta có: -4t2 + 4t + 3 = 0

 ⇔ t = 3/2 hoặc t = -1/2.

Xem thêm: Tải Mortal Kombat 4 - Cách Chơi Mk4 2 Người

+ t = 3/2 >1 cần loại

*
*
 
*

* Chú ý: Đối với phương trình dạng: asin2x + bsinx.cosx + c.cos2x = 0, (a,b,c≠0). Phương pháp giải như sau:

 - Ta có: cosx = 0 chưa phải là nghiệm của phương trình vị a≠0,

 Chia 2 vế mang đến cos2x, ta có:atan2x + btanx + c = 0 (được PT bậc 2 với tanx)

 - nếu như phương trình dạng: asin2x + bsinx.cosx + c.cos2x = d thì ta vắt d = d.sin2x + d.cos2x, cùng rút gọn đem lại dạng trên.

° Dạng 5: Phương trình dạng: asinx + bcosx = c (a,b≠0).

* Phương pháp

◊ phương pháp 1: Chia hai vế phương trình cho , ta được:

 

 - Nếu  thì phương trình vô nghiệm

 - Nếu  thì đặt 

 (hoặc )

- Đưa PT về dạng:  (hoặc ).

 ◊ cách 2: Sử dụng công thức sinx với cosx theo ;

 

 - Đưa PT về dạng phương trình bậc 2 so với t.

* lưu ý: PT: asinx + bcosx = c, (a≠0,b≠0) có nghiệm khi c2 ≤ a2 + b2

• Dạng bao quát của PT là:asin + bcos = c, (a≠0,b≠0).

* Ví dụ: Giải những phương trình sau:

a) 

b)

° Lời giải:

a) 

+ Ta có: 

*
 khi đó:

  

*

+ Đặt 

*
 ta có: cosφ.sinx + sinφ.cosx = 1.

 

*
 
*
 
*

b) 

 

*
 
*

 

*

 

*
 hoặc 
*

 

*
 hoặc 
*

* lưu giữ ý: bài bác toán vận dụng công thức:

 

*
 

 

*

° Dạng 6: Phương trình đối xứng với sinx với cosx

 a(sinx + cosx) + bsinx.cosx + c = 0 (a,b≠0).

* Phương pháp

- Đặt t = sinx + cosx, lúc đó:  thay vào phương trình ta được:

 bt2 + 2at + 2c - b = 0 (*)

- lưu lại ý: 

*
 nên điều kiện của t là: 

- vì vậy sau khi kiếm được nghiệm của PT (*) nên kiểm tra (đối chiếu) lại điều kiện của t.

- Phương trình dạng: a(sinx - cosx) + bsinx.cosx + c = 0 không hẳn là PT dạng đối xứng tuy nhiên cũng rất có thể giải bằng cách tương tự:

 Đặt t = sinx - cosx;  

*

* Ví dụ: Giải các phương trình sau:

a) 2(sinx + cosx) - 4sinx.cosx - 1 = 0

b) sin2x - 12(sinx + cosx) + 12 = 0

° Lời giải:

a) 2(sinx + cosx) - 4sinx.cosx - 1 = 0

+ Đặt t = sinx + cosx, , khi đó:   thay vào phương trình ta được:

 

*
 ⇔ 2t2 - 2t - 1 = 0

  hoặc 

+ Với  

*

 

*
 
*

 

*

+ Tương tự, với 

*

 b) sin2x - 12(sinx + cosx) + 12 = 0

 

*

 

*

Đặt t = sinx + cosx, , khi đó:   thay vào phương trình ta được:

 

*
 
*
 
*

+ cùng với t=1 

*

 

*
*

 

*
 hoặc 
*

*
 hoặc 
*

+ Với 

*
: loại

III. Bài xích tập về các dạng toán Phương trình lượng giác

Bài 2 (trang 28 SGK Đại số cùng Giải tích 11): Với đa số giá trị nào của x thì giá chỉ trị của những hàm số y = sin 3x với y = sin x bởi nhau?

° giải mã bài 2 trang 28 SGK Đại số và Giải tích 11:

- Ta có: 

*

 

*
 
*

 

*

- Vậy với 

*
thì 
*

* bài 3 (trang 28 SGK Đại số 11): Giải những phương trình sau:

 a) 

 b) 

*

 c) 

 d) 

° lời giải bài 3 trang 28 SGK Đại số với Giải tích 11:

a) 

 

*
 
*

- Kết luận: PT có nghiệm

*

b) cos3x = cos12º

⇔ 3x = ±12º + k.360º , k ∈ Z

⇔ x = ±4º + k.120º , k ∈ Z

- Kết luận: PT gồm nghiệm x = ±4º + k.120º , k ∈ Z

c) 

 

*
 

 

*
 hoặc 
*

 

*
 hoặc 
*

 

*
 hoặc 
*

d) 

 

*
 hoặc 
*

 

*
 hoặc 
*

 

*
 hoặc 
*

Bài 4 (trang 29 SGK Đại số và Giải tích 11): Giải phương trình 

° lời giải bài 3 trang 28 SGK Đại số với Giải tích 11:

- Điều kiện: sin2x≠1

- Ta có:  

*

 

*
 
*

 

*

+ Đến phía trên ta cần đối chiếu với điều kiện:

- Xét k lẻ tức là: k = 2n + 1

 

*

*
(thỏa điều kiện)

- Xét k chẵn tức là: k = 2n

*

*
 (không thỏa ĐK)

- Kết luận: Vậy PT gồm họ nghiệm là 

*

Bài 1 (trang 36 SGK Đại số và Giải tích 11): Giải phương trình: sin2x – sinx = 0 

° giải mã bài 1 trang 36 SGK Đại số cùng Giải tích 11:

- Ta có: sin2x – sinx = 0

 

*

 

*
 
*

 

*
 hoặc 
*

- Kết luận: PT tất cả tập nghiệm 

*

* bài xích 2 (trang 36 SGK Đại số với Giải tích 11): Giải những phương trình sau:

a) 2cos2x – 3cosx + 1 = 0

b) 2sin2x +

*
.sin4x = 0

° giải mã bài 2 trang 36 SGK Đại số cùng Giải tích 11:

a) 2cos2x – 3cosx + 1 = 0 (1)

- Đặt t = cosx, điều kiện: –1 ≤ t ≤ 1, khi đó PT (1) trở thành: 2t2 – 3t + 1 = 0